
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 956–962
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

956

Dataset of Student Solutions to Algorithm and Data Structure
Programming Assignments

Fynn Petersen-Frey1, Marcus Soll2, Louis Kobras3
Melf Johannsen4, Peter Kling5, Chris Biemann1

1 Language Technology Group, Dept. of Informatics, Universität Hamburg
2 NORDAKADEMIE gAG Hochschule der Wirtschaft, Köllner Chaussee 11, 25337 Elmshorn

3 Fachbereich Informatik, Universität Hamburg
4 Center for Optical Quantum Technologies, Fachbereich Physik, Universität Hamburg
5 Theory of Efficient Algorithms Group, Dept. of Informatics, Universität Hamburg
{fynn.petersen-frey, louis.kobras, peter.kling, christian.biemann}@uni-hamburg.de

marcus.soll@nordakademie.de, mjohanns@physnet.uni-hamburg.de

Abstract
We present a dataset containing source code solutions to algorithmic programming exercises solved by hundreds of Bachelor-level
students at the Universität Hamburg. These solutions were collected during the winter semesters 2019/2020, 2020/2021 and
2021/2022. The dataset contains a set of solutions to a total of 21 tasks written in Java as well as Python and a total of over 1500
individual solutions. All solutions were submitted through Moodle and the Coderunner plugin and passed a number of test cases
(including randomized tests), such that they can be considered as working correctly. All students whose solutions are included in
the dataset gave their consent into publishing their solutions. The solutions are pseudonymized with a random solution ID.
Included in this paper is a short analysis of the dataset containing statistical data and highlighting a few anomalies (e.g. the
number of solutions per task decreases for the last few tasks due to grading rules). We plan to extend the dataset with tasks and
solutions from upcoming courses.

Keywords: dataset, programming, algorithm, sourcecode, java, python

1. Introduction
Many people believe that the ability to write computer
programs is an important skill to form the world we
are living in (Körber-Stiftung, 2017), yet only a small
part of the German society is able to actually handle the
activity of programming (Initiative D21, 2021). There-
fore, the idea of using natural language (e.g. English
or German language) which is then automatically trans-
lated into computer code is quite old (Price et al., 2000;
Begel, 2004). To improve these approaches, it would be
useful to have datasets with tasks described in natural
language and different valid computer programs which
solve the task.
Motivated by this, we created a new dataset consisting of
student solutions to natural language task descriptions.
With this dataset, we hope to enable future research on
learning programming, algorithms and data structures
both for students and in machine learning contexts. The
dataset is available under the permissive CC BY-NC 4.0
license.1

The dataset contains algorithmic programming assign-
ments formulated originally in German together with
accompanying test cases and currently 1500+ source
code solutions in Java and Python by students partici-
pating in Bachelor-level algorithm and data structures
courses at Universität Hamburg. Only correct solutions
from students who consented on both collection and dis-

1https://www.inf.uni-hamburg.de/en/
inst/ab/lt/resources/data/ad-lrec

Implement a class ”Queue” that works like a queue
(as described in the lecture). The class should have
at least the methods isEmpty(), head(), enqueue(x)
and dequeue(). The queue does not need to hold
more than 100 elements.
Note 1: In the Java test, the stack is expected to
store ”strings”. Since Python is dynamically typed,
this does not apply.
Note 2: It is not allowed to use ”import”!

Figure 1: Example task description

tribution are included in the published dataset. To make
the dataset more easily accessible to others, we also
provide carefully translated task descriptions in English.
One example of such a task can be seen in Figure 1.
The task description further contains some usage ex-
amples and a skeleton of the class with empty method
bodies. For brevity reasons, these can only be found
in the dataset but are not shown here. A random, very
concise Python solution to this task is shown in Figure 2.
As the tasks have an open solution space, the answers
vary substantially in length, style, usage of comments
as well as naming of variables and possible helper func-
tions. To check the answers for correctness, each exer-
cise has a number of test cases that a solution must pass.
Table 1 shows a few of the test cases used to verify the
Python solutions for the example task from Figure 1.

https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/ad-lrec
https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/ad-lrec

957

Listing 1: A student’s Python solution
c l a s s Queue :

def i n i t (s e l f) :
s e l f . a r r a y = []

def i sEmpty (s e l f) :
re turn l e n (s e l f . a r r a y) == 0

def head (s e l f) :
re turn s e l f . a r r a y [0]

def enqueue (s e l f , x) :
s e l f . a r r a y . append (x)

def dequeue (s e l f) :
re turn s e l f . a r r a y . pop (0)

Figure 2: Example task description

Test case Correct output

q = Queue ()
p r i n t (q . i sEmpty ())

True

q = Queue ()
f o r i in range (1 , 1 0 1) :

q . enqueue (i)
f o r i in range (4 0) :

q . dequeue ()
p r i n t (q . head ())

41

q = Queue ()
q . enqueue (” Kakao ”)
p r i n t (q . i sEmpty ())

False

Table 1: 3 out of 10 Python test cases for the task

In our previous work, we describe our lessons learned
during the introduction of automatically assessed pro-
gramming exercises to the algorithms and data struc-
tures course (Soll et al., 2020). In that work, we con-
ducted a user study with 44 participants showing that
the introduction of the new exercises was generally per-
ceived well by the students, although improvements (e.g.
better feedback to students) were still possible.

In this paper, we make the following contributions:

• a new dataset containing natural language task de-
scriptions to source code with test cases and stu-
dent solutions in two programming languages,

• details on the creation of the dataset,
• analysis of the dataset.

As compared to other similar datasets, the key differ-
ences and novelties of our dataset are the focus on more
complex tasks from the domain of algorithms and data
structures, tasks requiring to implement data structures,
solutions without library usage and problem descrip-
tions referring to course material.

2. Related work
Shin and Nam (2021) provide an extensive overview of
the field of automatic code generation from natural lan-
guage. They categorize approaches by their code, input
and output form, e.g., systems transforming line-by-line
natural language instructions into runnable soure code,
systems translating abstract natural language descrip-
tions into code snippets or when also given unit tests
into fully runnable source code.
Oda et al. (2015) propose a method to automatically gen-
erate pseudo-code from source code using an adapted
statistical machine translation approach. They provide
the Django dataset consisting of pseudo code and source
code pairs.
Lin et al. (2018) created NL2Bash, a parallel corpus of
natural language instructions and Linux shell commands.
The natural language instructions are short and usually
consist of a single sentence. The corpus only includes
shell commands that are formulated in a single line.
Based on NL2Bash, Agarwal et al. (2021) created a
new dataset for the NLC2CMD competition by incor-
porating approximately 800 additional pairs of natural
language to Linux shell commands collected from two
other sources: The Tellina query log and the NLC2CMD
data collection track. For use in the competition, the
dataset is filtered by checking the validity of the Linux
shell commands with a Bash parser.
Yin et al. (2018) created the CoNaLa dataset, a fine-
grained, parallel corpus of natural language question/in-
struction and source code. They crawled data from Stack
Overflow, filtered the pairs automatically and finally cu-
rated them manually via crowdsourcing.
Yao et al. (2018) created another dataset of question-
code pairs from Stack Overflow named StaQC. Trough
crawling and filtering with a neural network they pro-
duce a large collection of Python and SQL code snippets
that are a standalone solution to the question.
Husain et al. (2019) created the CodeSearchNet chal-
lenge dataset, a parallel corpus of comment-code pairs
extracted from open source libraries in six programming
languages. The dataset is designed to train and evalu-
ated systems retrieving relevant source code given a
natural language query.
The JuICe dataset is large distantly supervised dataset
for open domain context-based code generation based
on online programming exercises (Agashe et al., 2019).
Its test set further provides refined human-curated data.
A large fraction of the natural language instructions
is written in high-level, declarative style. The dataset
mainly consists of code for real world applications, pri-
marily for data science and machine learning.
Hendrycks et al. (2021) created the Automated Program-
ming Progress Standard (APPS) benchmark dataset,
a collection of 10,000 natural language coding prob-
lems with 131,777 test cases for checking solutions
and 232,421 ground-truth solutions written by humans.
In contrast to the previous datasets, the problem state-
ments are considerably more complex with an average

958

length of 293.2 words in natural language and are catego-
rized into three levels of difficulty. The problems were
crawled, deduplicated and manually curated from open-
access coding sites. Hendrycks et al. (2021) further
trained multiple GPT models to automatically generate
solutions for these programming assignments and found
GPT-Neo be able to solve 5% of the introductory-level
problems.
Atzeni and Atzori (2018) work on the translation of
natural language to source code using an unsupervised
ontology-based approach. They describe a semantic
approach to translate primarily mathematical, single-
sentence natural language commands and questions into
short Java code.
Spacco et al. (2015) perform an analysis of data col-
lected by the CloudCoder programming exercise system
from introductory courses taught in two programming
languages. While they demonstrate the research poten-
tial of collecting and analyzing data from programming
exercise, the data used in their analysis is not publicly
available. Wang et al. (2017) use data from Hour of
Code course exercise 18 to perform “knowledge tracing”
by modeling a student’s learning through analysis of the
answers to the programming exercises.

3. Construction of the dataset
In this section, we describe how the dataset has been cre-
ated. First, we outline why and how we added automat-
ically graded programming exercises to the e-learning
platform and briefly discuss the challenges we encoun-
tered. Second, we describe how we collected the data
and what measures we applied to enable the distribution
of student solutions under the data protection laws.

3.1. Challenges of creating automatically
graded programming exercises

The Department of Informatics at Universität Hamburg
uses Moodle2 as a digital learning platform. In the algo-
rithms and data structures course, Moodle has already
been used in the past to organize the course work, pro-
vide a platform for communication within the course,
and supply both lecture materials and manually-graded
non-programming exercises.
Starting with the winter semester 2019/2020, program-
ming exercises were added to the course in order to
facilitate the students’ understanding of the various algo-
rithms and data structures by implementing a selection
of them in actual code. In other courses offered by the
Department of Informatics, automatically assessed tests
had already been employed for multiple-choice ques-
tions and similar questions with a very limited solution
space. Compared to those prior exercises, the integra-
tion of programming exercises presented a number of
unique challenges.
While manual review of submissions by tutors is cer-
tainly possible, it is infeasible to do so for hundreds

2Moodle is a free and open-source e-learning platform
extensible with plugins. https://moodle.org

of source code solutions with only a handful of tutors.
This issue was aggravated by the need for immediate
feedback while a student is working on a task. Thus, we
settled on a fully automatic, instantaneous assessment
using unit tests.
We used the CodeRunner plug-in (Lobb and Harlow,
2016) to provide an interactive coding environment
within Moodle. Thereby, a student was able to test a
potential solution against a number of test cases defined
for each exercise. A solution was seen as correct when
it passed all test cases of the exercise, a subset of which
were visible to the student. The non-visible set of test
cases featured randomized inputs to prevent hard-coded
solutions as well as test cases to prevent students from
using library functions. Consequently, students mostly
wrote the code for the algorithms and data structures
from scratch as intended, although copying existing
code from external sources could not feasibly be pre-
vented.
For more details on the setup (e.g. design and deploy-
ment of the system) and our experiences, refer to our
previous work (Soll et al., 2020).

3.2. Collecting the data
As task descriptions, test cases and student solutions are
created and edited within the CodeRunner plug-in for
Moodle, the e-learning platform is the single source of
truth for the data. Since we collected task descriptions,
test cases and student solutions after a course ended, we
were able to ensure that they are in a consistent state, i.e.,
only the most recent, final version is used for the dataset.
This is necessary because the task descriptions and/or
some test cases were occasionally revised during the
course following input from the students. Consequently,
the students were allowed to revise and re-submit their
solutions as well.
We included only those solutions that are considered
correct in the context of the exercise, i.e., were graded
with the maximum number of points achievable for each
exercise.
Since the students produced their solutions for the ex-
ercises during a course at Universität Hamburg, the
principle of data economy (data protection law in the
EU) states that, without explicit consent, the students’
data may only be used for the purpose they were col-
lected for. That is, to ascertain passing the course and to
archive all grading-related data as strictly regulated by
law. To use student solutions for other purposes, e.g., re-
search, we asked each student for permission during the
course. The students could freely choose whether they
wanted to allow the usage and redistribution of their
solutions for research purposes. Each student’s name
was replaced by a random identifier to allow tracing the
solutions of a student across different exercises. It was
explicitly made clear that their progression and grading
of the course is completely unaffected by their choice.
Thus, students had to explicitly opt-in for their solutions
to be included.

https://moodle.org

959

We converted the task descriptions to both PDF (via La-
TeX) and plain text with LaTeX-math only for formulas.
As the task descriptions are written in German for the
course, we additionally provide a carefully translated
English version for better accessibility and application
of English NLP methods resp. models. The test cases
were exported alongside the task descriptions.

3.3. License
The dataset is licensed under the Creative Commons
Attribution-NonCommercial 4.0 International License.
This allows an easy sharing and redistribution of both
the original data as well as other datasets building on
top of it while only requiring attribution and forbidding
commercial usage (as the students were only asked for
permission to use their solutions in a non-commercial
way, like scientific usage).3

4. Dataset exploration
The dataset contains programming exercises for Java
and Python from the domain of algorithms and data
structures consisting of German and English task de-
scriptions, test cases and student source code solutions
for both programming languages. Currently, it contains
21 tasks, 533 test cases (almost 13 on average per task
and programming language) as well as 1500+ source
code solutions from students who consented on both
collection and distribution of their solutions.

4.1. Dataset overview
The dataset consists of three CSV files: Task descrip-
tions, test cases and student solutions. The first file
lists each task description with its identifier, original
German title, translated English title, plain text German
task description, translated English task description, so-
lution code skeleton, shared code for the test cases and
a solution.
The task identifier is built from the semester, the ex-
ercise block, the exercise number and programming
language. An example is 19 20-4-2-java; a task
from the course in the winter semester 2019/20, exer-
cise block 4, exercise number 2 within the block and
Java as programming language. In the Moodle courses,
topically related exercises were grouped together in an
exercise block.
Plain text task descriptions in both German and English
still contain LaTeX math formulas enclosed in $ signs.
As these formulas are often essential to solve a task, we
decided to keep them as is. The solution code skele-
ton was shown to the students to use as basis for their
custom solution. These code fragments usually define
the basic parts, i.e., names of functions or classes, to
be compatible with the automated tests. The tester is
shared code that is required to run the test cases. It

3More detailed and precise legal information can be found
at http://creativecommons.org/licenses/by-
nc/4.0/ and in the license file accompanying the dataset

1-
1

2-
1

2-
2

3-
1

4-
1

4-
2

5-
1

5-
2

6-
1

6-
2

Task

0
20
40
60
80

100

pa
ss

%

Course 19/20
Java
Python

1-
1

1-
2

2-
1

3-
1

3-
2

Task

0
20
40
60
80

100

pa
ss

%

Course 20/21

1-
1

1-
2

2-
1

2-
2

3-
1

3-
2

Task

0
20
40
60
80

100

pa
ss

%

Course 21/22

Figure 3: Percentage of correct solutions from the stu-
dents who consented to collection

provides classes and methods used in the individual test
cases to make them concise.
The test cases for all assignments are listed in the sec-
ond file with the task identifier to link a test case to the
corresponding task description. For each task, the test
cases are numbered and apart from the test code and ex-
pected output also feature a flag indicating whether the
test case is an example, i.e., was shown to the students.
Since the test cases originate from Moodle, they differ
from typical Java or Python unit tests. Instead of using
asserts, the test cases produce an output that has to be
compared externally with the expected output.
The third file contains one solution together with the task
identifier and randomized student identifier. As students
could freely choose which programming language to
use for each exercise, students could to do some task in
both languages, some task in Java, the next in Python or
not all. Thus, the number of solutions per exercise can
vary greatly.

4.2. Dataset analysis
In this section, we describe the results of our quantitative
analysis of the dataset and give insights into certain
anomalies we found that can only be explained with
knowledge of the courses. Table 2 gives an overview
of the dataset by comparing the data of the three years
currently contained in the dataset. It gives the number
of exercises in each year, the number of students that
consented to collection of their solutions, the number of
total and correct solutions of these students as well as
the total number of test cases. The table also displays
the average length of all task descriptions (word count)
as well as the average length of student solutions by
lines of code (LOC), including comment-only lines but
excluding empty (whitespace-only) lines, both global
average and average by programming language.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

960

Course 19/20 20/21 21/22

Exercises 10 5 6
Students 85 91 128
Correct solutions (abs.) 541 415 570
Correct solutions (rel. %) 68.5 75.0 73.3
Test cases 241 142 150
Avg. task descr. length 122.7 200.4 201.0
Avg. LOC 25.3 21.8 16.6
Avg. LOC (Java) 28.8 26.1 20.0
Avg. LOC (Python) 19.7 17.7 12.7

Table 2: Dataset statistics overview for the courses in
2019/20, 2020/21 and 2021/22. Task description length
measured in words. LOC is short for lines of code.

When comparing these statistics for the three courses
a few aspects stand out. While the number of exer-
cises was cut in half from the 2019/20 course to the
2020/21 course, the average exercise description length
increased by over 60% and stayed the same in the most
recent course. This could be an indicator that the exer-
cises of the 2020/21 and 2021/22 courses were fewer in
number but more challenging. When creating the newer
exercises, we wanted to keep the difficulty roughly at
the same level. Since the percentage of correct solu-
tions increased slightly over the 2019/20 course, a more
likely reason is that the exercise descriptions in the later
courses are more detailed and provide more context
information. The average solution length decreased
slightly for both Java and Python from the first to the
second course. In the most recent course, the aver-
age solution lengths decreased stronger. Combined, it
decreased even more because at the same time more
students used the more concise Python language in the
more recent courses than before. The number of test
cases per task and programming language remained sim-
ilar, increasing on average from 12.1 in the first course
to 12.8 in the second course and decreasing slightly to
12.5 in the third course.
Figure 3 shows the relative number of correct solutions
for each exercise in the dataset. In the 2019/20 course,
the Java solutions exhibit a strong decline from more
than 80% in the first four exercises down to mere 10%
in the last exercise. While Python has a lower ratio of
correct solutions for the first four exercises, it is the
opposite during the remaining six exercises. Still, the
last two exercises reach only 41% resp. 23% of correct
solutions. We identified four main reasons for low num-
bers on the two exercises in the last exercise block. First,
the students were only required to pass one of both exer-
cises to achieve full points in the exercise block. Thus,
they likely looked at both exercises but only put effort
into solving one of them. Second, most students did
simply not require the points from the last exercises to
pass the course as they already collected enough points
during the other exercises. Thirdly, except for having
a passing grade on a certain number of programming

tasks to pass the course, there was no further organiza-
tional incentive for students to interact with the tasks
after a certain point. Consequently, some likely did not
see a point in putting more time and thought into their
last solutions and instead focused on the theoretical ex-
ercises for the exam. The programming exercises and
the theoretical exercises had to be passed individually
to pass the course. Lastly, the exercises were set to auto-
submit at due date such that all students who opened
an exercise for any reason, even if only for looking at
the task, had submitted a solution, which then probably
would not have been correct. We were able to observe a
large number of students who looked at an exercise in
both programming languages but worked on it only in
one. Thus, the pass%-value especially of the later tasks
of the course of 2019/20 is probably skewed due to a
large number of “empty” responses.
In the 2020/21 course, the ratio of correct solutions is
rather constant at approximately 80% across all five ex-
ercises. Only for the last two exercises (belonging to one
exercise block) the percentage of correct Java solutions
decreases. In contrast to the previous course, the theoret-
ical assignments and programming exercises had to be
passed as a whole. As such, students could compensate
their performance on the theoretical assignments with
the programming exercises and vice versa. However,
the points to be obtained from the programming exer-
cises only account for roughly 10% of the total points
in the course. The exercises were primarily intended to
motivate students by applying the theoretical concepts
in actual code and to get a better understanding of the
algorithms and data structures by implementing them.
In the 2021/22 course, the ratio of correct solutions
decreases continuously from almost 100% in the first
two tasks to less than 40% in the last task. The tasks
are generally becoming more difficult throughout the
course. While the first tasks require implementations
of algorithms such as exponentiation by squaring, least
common multiple or edit distance, later tasks require
writing and applying data structures such as queue, stack
or search trees. As in the previous course, the theoreti-
cal assignments and programming exercises had to be
passed as a whole. Again, the programming assignments
were not meant to stop anyone from passing the course,
but to help understand algorithms and data structures.
Table 3 goes into more detail than Table 2, separating
the information not only by year but also by exercise and
programming language. The dataset only contains the
solutions that passed all tests, i.e., were seen as correct,
for a total of 1526 entries at the time of writing.
We further encountered some special cases in the exer-
cises that may not be evident from the statistics but that
might be important for any approach to automatically
translate the exercise descriptions into source code. In
the 2019/20 course, the exercises in the fifths block built
on each other. While exercise 5-1 describes context
(graphs), problem and required solution (breadth-first
search) in great detail, exercise 5-2 builds on it and

961

correct solutions

ex. lang. WC tests abs. rel. % LOC

Course 19/20
1-1 Java 93 5 51 93 16.9
1-1 Python 93 5 31 89 9.7
2-1 Java 68 11 49 84 35.1
2-2 Java 241 13 49 84 32.3
2-1 Python 68 10 27 75 31.6
2-2 Python 231 13 25 69 20.4
3-1 Java 121 11 48 84 17.8
3-1 Python 121 11 19 54 13.3
4-1 Java 105 8 41 77 28.9
4-2 Java 98 10 37 70 46.1
4-1 Python 98 8 23 85 18.9
4-2 Python 91 10 22 81 37.5
5-1 Java 205 11 24 51 26.6
5-2 Java 45 11 20 43 26.2
5-1 Python 191 11 23 74 14.2
5-2 Python 32 11 23 74 14.0
6-1 Java 65 21 12 40 37.7
6-2 Java 211 20 3 10 30.7
6-1 Python 65 21 9 41 17.9
6-2 Python 211 20 5 23 19.6

Course 20/21
1-1 Java 160 6 48 77 15.7
1-2 Java 148 6 49 79 40.0
1-1 Python 160 20 46 85 14.3
1-2 Python 149 11 41 76 24.9
2-1 Java 323 17 47 90 16.8
2-1 Python 288 17 40 86 11.8
3-1 Java 220 21 35 64 25.2
3-2 Java 166 10 22 40 39.6
3-1 Python 220 21 49 88 16.2
3-2 Python 170 13 38 68 21.9

Course 21/22
1-1 Java 142 15 71 96 17.0
1-2 Java 157 17 72 97 20.3
1-1 Python 149 17 56 95 12.5
1-2 Python 146 18 56 95 12.6
2-1 Java 324 17 52 66 20.4
2-2 Java 212 5 55 70 17.7
2-1 Python 289 17 54 81 11.7
2-2 Python 235 7 49 73 11.7
3-1 Java 162 7 31 52 18.5
3-2 Java 215 10 23 38 34.3
3-1 Python 162 7 32 64 10.6
3-2 Python 219 13 19 38 22.5

Table 3: Exercise statistics for the three courses show-
ing for each exercise (ex.) and programming language
(lang.) the word count (WC) of the task description, the
number of test cases, number of solutions that passed
all test cases (abs.), their percentage of all submitted
solutions (rel.%) and the average lines of code (LOC) of
the solutions in the dataset. All solution statistics were
calculated from the subset of solutions where students
consented on the scientific usage of their data.

only asks to implement a similar algorithm (depths-
first search). Tasks 19 20-5-1, 20 21-3-2 and
21 22-3-2 further use an image depicting an example
graph. In the 2020/21 and 2021/22 courses, most exer-
cises explicitly state a maximal run time for the solution
both in big-O notation and as a processing time limit
in seconds. These time limits have been enforced by
the CodeRunner plugin and are thus not automatically
enforced in the extracted test cases.

5. Conclusion and future directions
In this paper we presented a new dataset containing
21 algorithmic programming tasks (accompanied by
test cases) and a total of 1500+ solutions created by
computer science students in a Bachelor course at Uni-
versität Hamburg. The dataset is made available under
the Creative CommonsAttribution-NonCommercial 4.0
International License.
The data was collected during the winter semesters of
2019/2020, 2020/2021 and 2021/2022 by exporting sub-
mitted solutions from Moodle / Coderunner for all stu-
dents who gave their consent. Together with the dataset
we presented some basic statistical data as well as in-
formed about noteworthy observations concerning the
development of the solution set over the semester.
For the time being, we plan to continually add more
exercises with corresponding test cases and students
solutions from future courses to the dataset. We hope
that by expanding the dataset it will become even more
useful in future research. Possible future experiments
include the application of state-of-the-art machine learn-
ing methods to automatically translate natural language
to source code.

6. Acknowledgements
We would like to thank all students who have partici-
pated in the courses and agreed to distribute and use
their assignment solutions for scientific purposes. Ad-
ditionally, we would like to thank Matin Urdu and Ah-
mad Shallouf for integrating further programming as-
signments for the courses during the winter semesters
2020/2021 and 2021/2022.
Marcus Soll, Louis Kobras and Melf Johannsen were
funded by MINTFIT Hamburg4. MINTFIT Hamburg
is a joint project of the four STEM universities in Ham-
burg: Hamburg University of Applied Sciences (HAW),
HafenCity University Hamburg (HCU), Hamburg Uni-
versity of Technology (TUHH), University Medical Cen-
ter Hamburg-Eppendorf (UKE) as well as Universität
Hamburg (UHH) and is funded by the Hamburg Author-
ity for Science, Research and Gender Equality5.
Fynn Petersen-Frey was partly supported by the Cluster
of Excellence CLICCS (EXC 2037), Universität Ham-
burg, funded through the German Research Foundation
(DFG).

4https://www.mintfit.hamburg/en
5https://www.hamburg.de/bwfg

https://www.mintfit.hamburg/en
https://www.hamburg.de/bwfg

962

7. Bibliographical References
Agarwal, M., Chakraborti, T., Fu, Q., Gros, D., Lin,

X. V., Maene, J., Talamadupula, K., Teng, Z., and
White, J. (2021). Neurips 2020 nlc2cmd competition:
Translating natural language to bash commands. In
Hugo Jair Escalante et al., editors, Proceedings of the
NeurIPS 2020 Competition and Demonstration Track,
volume 133 of Proceedings of Machine Learning
Research, pages 302–324. PMLR.

Agashe, R., Iyer, S., and Zettlemoyer, L. (2019). JuICe:
A large scale distantly supervised dataset for open do-
main context-based code generation. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5436–5446, Hong Kong,
China. Association for Computational Linguistics.

Atzeni, M. and Atzori, M. (2018). Translating natural
language to code: An unsupervised ontology-based
approach. In 2018 IEEE First International Confer-
ence on Artificial Intelligence and Knowledge Engi-
neering (AIKE), pages 1–8.

Begel, A. (2004). Spoken Language Support for Soft-
ware Development. In 2004 IEEE Symposium on
Visual Languages - Human Centric Computing, page
271–272.

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M.,
Arora, A., Guo, E., Burns, C., Puranik, S., He, H.,
Song, D., and Steinhardt, J. (2021). Measuring cod-
ing challenge competence with APPS. In Thirty-fifth
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track (Round 2).

Husain, H., Wu, H., Gazit, T., Allamanis, M., and
Brockschmidt, M. (2019). Codesearchnet challenge:
Evaluating the state of semantic code search. CoRR,
abs/1909.09436.

Initiative D21. (2021). Digital Skills Gap - So
(unterschiedlich) digital kompetent ist die deutsche
Bevölkerung. https://initiatived21.de/
app/uploads/2021/08/digital-skills-
gap_so-unterschiedlich-digital-
kompetent-ist-die-deutsche-
bevlkerung.pdf.

Körber-Stiftung. (2017). Programmieren eröffnet Wel-
ten. Körber-Stiftung Pressemeldungen.

Lin, X. V., Wang, C., Zettlemoyer, L., and Ernst, M. D.
(2018). NL2Bash: A corpus and semantic parser
for natural language interface to the linux operating
system. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Lobb, R. and Harlow, J. (2016). Coderunner: A tool
for assessing computer programming skills. ACM
Inroads, 7(1):47–51.

Oda, Y., Fudaba, H., Neubig, G., Hata, H., Sakti, S.,
Toda, T., and Nakamura, S. (2015). Learning to gen-
erate pseudo-code from source code using statistical

machine translation. In 2015 30th IEEE/ACM Inter-
national Conference on Automated Software Engi-
neering (ASE), pages 574–584.

Price, D., Rilofff, E., Zachary, J., and Harvey, B. (2000).
NaturalJava: A Natural Language Interface for Pro-
gramming in Java. In Proceedings of the 5th Interna-
tional Conference on Intelligent User Interfaces, IUI
’00, page 207–211, New York, NY, USA. Association
for Computing Machinery.

Shin, J. and Nam, J. (2021). A survey of automatic code
generation from natural language. J. Inf. Process.
Syst., 17(3):537–555.

Soll, M., Kobras, L., Johannsen, M., and Biemann, C.
(2020). Enhancing a theory-focused course through
the introduction of automatically assessed program-
ming exercises - lessons learned. In Tom Broos et al.,
editors, Proceedings of the Impact Papers at EC-TEL
2020, co-located with the 15th European Confer-
ence on Technology-Enhanced Learning ”Addressing
global challenges and quality education” (EC-TEL
2020), Virtual, September 14-18, 2020, volume 2676
of CEUR Workshop Proceedings. CEUR-WS.org.

Spacco, J., Denny, P., Richards, B., Babcock, D., Hove-
meyer, D., Moscola, J., and Duvall, R. (2015). An-
alyzing student work patterns using programming
exercise data. In Proceedings of the 46th ACM Tech-
nical Symposium on Computer Science Education,
SIGCSE ’15, page 18–23, New York, NY, USA. As-
sociation for Computing Machinery.

Wang, L., Sy, A., Liu, L., and Piech, C. (2017). Deep
knowledge tracing on programming exercises. In Pro-
ceedings of the Fourth (2017) ACM Conference on
Learning @ Scale, L@S ’17, page 201–204, New
York, NY, USA. Association for Computing Machin-
ery.

Yao, Z., Weld, D. S., Chen, W., and Sun, H. (2018).
Staqc: A systematically mined question-code dataset
from stack overflow. In Pierre-Antoine Champin,
et al., editors, Proceedings of the 2018 World Wide
Web Conference on World Wide Web, WWW 2018,
Lyon, France, April 23-27, 2018, pages 1693–1703.
ACM.

Yin, P., Deng, B., Chen, E., Vasilescu, B., and Neubig,
G. (2018). Learning to mine aligned code and natural
language pairs from stack overflow. In Proceedings
of the 15th International Conference on Mining Soft-
ware Repositories, MSR ’18, page 476–486, New
York, NY, USA. Association for Computing Machin-
ery.

https://initiatived21.de/app/uploads/2021/08/digital-skills-gap_so-unterschiedlich-digital-kompetent-ist-die-deutsche-bevlkerung.pdf
https://initiatived21.de/app/uploads/2021/08/digital-skills-gap_so-unterschiedlich-digital-kompetent-ist-die-deutsche-bevlkerung.pdf
https://initiatived21.de/app/uploads/2021/08/digital-skills-gap_so-unterschiedlich-digital-kompetent-ist-die-deutsche-bevlkerung.pdf
https://initiatived21.de/app/uploads/2021/08/digital-skills-gap_so-unterschiedlich-digital-kompetent-ist-die-deutsche-bevlkerung.pdf
https://initiatived21.de/app/uploads/2021/08/digital-skills-gap_so-unterschiedlich-digital-kompetent-ist-die-deutsche-bevlkerung.pdf

	Introduction
	Related work
	Construction of the dataset
	Challenges of creating automatically graded programming exercises
	Collecting the data
	License

	Dataset exploration
	Dataset overview
	Dataset analysis

	Conclusion and future directions
	Acknowledgements
	Bibliographical References

